-
Notifications
You must be signed in to change notification settings - Fork 13.5k
[MLIR] Determine contiguousness of memrefs with a dynamic dimension #140872
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
Memrefs where only the leftmost dimension of the trailing ones to check for contiguity is dynamic can be reasoned about.
@llvm/pr-subscribers-mlir-vector @llvm/pr-subscribers-mlir-core Author: Momchil Velikov (momchil-velikov) ChangesMemrefs where only the leftmost dimension of the trailing ones to check for contiguity is dynamic can be reasoned about. Full diff: https://github.com/llvm/llvm-project/pull/140872.diff 2 Files Affected:
diff --git a/mlir/lib/IR/BuiltinTypes.cpp b/mlir/lib/IR/BuiltinTypes.cpp
index d47e360e9dc13..facf17551fa12 100644
--- a/mlir/lib/IR/BuiltinTypes.cpp
+++ b/mlir/lib/IR/BuiltinTypes.cpp
@@ -649,7 +649,10 @@ bool MemRefType::areTrailingDimsContiguous(int64_t n) {
if (!isLastDimUnitStride())
return false;
- auto memrefShape = getShape().take_back(n);
+ if (n == 1)
+ return true;
+
+ auto memrefShape = getShape().take_back(n-1);
if (ShapedType::isDynamicShape(memrefShape))
return false;
@@ -668,7 +671,7 @@ bool MemRefType::areTrailingDimsContiguous(int64_t n) {
// Check whether strides match "flattened" dims.
SmallVector<int64_t> flattenedDims;
auto dimProduct = 1;
- for (auto dim : llvm::reverse(memrefShape.drop_front(1))) {
+ for (auto dim : llvm::reverse(memrefShape)) {
dimProduct *= dim;
flattenedDims.push_back(dimProduct);
}
diff --git a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
index e840dc6bbf224..aa922415f2669 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
@@ -188,18 +188,20 @@ func.func @transfer_read_leading_dynamic_dims(
// -----
-// One of the dims to be flattened is dynamic - not supported ATM.
+// One of the dims to be flattened is dynamic and not the leftmost - not
+// possible to reason whether the memref is contiguous as the dynamic dimension
+// could be one and the corresponding stride could be arbitrary.
func.func @negative_transfer_read_dynamic_dim_to_flatten(
%idx_1: index,
%idx_2: index,
- %mem: memref<1x?x4x6xi32>) -> vector<1x2x6xi32> {
+ %mem: memref<1x4x?x6xi32>) -> vector<1x2x6xi32> {
%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %c0_i32 {
in_bounds = [true, true, true]
- } : memref<1x?x4x6xi32>, vector<1x2x6xi32>
+ } : memref<1x4x?x6xi32>, vector<1x2x6xi32>
return %res : vector<1x2x6xi32>
}
@@ -212,6 +214,41 @@ func.func @negative_transfer_read_dynamic_dim_to_flatten(
// -----
+// One of the dims to be flattened is dynamic and leftmost.
+
+func.func @transfer_read_dynamic_leftmost_dim_to_flatten(
+ %idx_1: index,
+ %idx_2: index,
+ %mem: memref<1x?x4x6xi32>) -> vector<1x2x6xi32> {
+
+ %c0 = arith.constant 0 : index
+ %c0_i32 = arith.constant 0 : i32
+ %res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %c0_i32 {
+ in_bounds = [true, true, true]
+ } : memref<1x?x4x6xi32>, vector<1x2x6xi32>
+ return %res : vector<1x2x6xi32>
+}
+
+// CHECK-LABEL: func.func @transfer_read_dynamic_leftmost_dim_to_flatten
+// CHECK-SAME: %[[IDX_1:arg0]]: index
+// CHECK-SAME: %[[IDX_2:arg1]]: index
+// CHECK-SAME: %[[MEM:arg2]]: memref<1x?x4x6xi32>
+// CHECK-NEXT: %[[C0_I32:.+]] = arith.constant 0 : i32
+// CHECK-NEXT: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-NEXT: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{\[}}[0], [1, 2, 3]{{\]}}
+// CHECK-SAME: : memref<1x?x4x6xi32> into memref<1x?xi32>
+// CHECK-NEXT: %[[TMP:.+]] = affine.apply #map{{.*}}()[%[[IDX_1]], %[[IDX_2]]]
+// CHECK-NEXT: %[[VEC1D:.+]] = vector.transfer_read %[[COLLAPSED]]
+// CHECK-SAME: [%[[C0]], %[[TMP]]], %[[C0_I32]]
+// CHECK-SAME: {in_bounds = [true]} : memref<1x?xi32>, vector<12xi32>
+// CHECK-NEXT: %[[RES:.+]] = vector.shape_cast %[[VEC1D]] : vector<12xi32> to vector<1x2x6xi32>
+// CHECK-NEXT: return %[[RES]] : vector<1x2x6xi32>
+
+// CHECK-128B-LABEL: func @transfer_read_dynamic_leftmost_dim_to_flatten
+// CHECK-128B-NOT: memref.collapse_shape
+
+// -----
+
// The vector to be read represents a _non-contiguous_ slice of the input
// memref.
@@ -451,26 +488,61 @@ func.func @transfer_write_leading_dynamic_dims(
// -----
-// One of the dims to be flattened is dynamic - not supported ATM.
+// One of the dims to be flattened is dynamic and not leftmost.
-func.func @negative_transfer_write_dynamic_to_flatten(
+func.func @negative_transfer_write_dynamic_dim_to_flatten(
%idx_1: index,
%idx_2: index,
%vec : vector<1x2x6xi32>,
- %mem: memref<1x?x4x6xi32>) {
+ %mem: memref<1x4x?x6xi32>) {
%c0 = arith.constant 0 : index
%c0_i32 = arith.constant 0 : i32
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true, true]} :
- vector<1x2x6xi32>, memref<1x?x4x6xi32>
+ vector<1x2x6xi32>, memref<1x4x?x6xi32>
return
}
-// CHECK-LABEL: func.func @negative_transfer_write_dynamic_to_flatten
+// CHECK-LABEL: func.func @negative_transfer_write_dynamic_dim_to_flatten
// CHECK-NOT: memref.collapse_shape
// CHECK-NOT: vector.shape_cast
-// CHECK-128B-LABEL: func @negative_transfer_write_dynamic_to_flatten
+// CHECK-128B-LABEL: func @negative_transfer_write_dynamic_dim_to_flatten
+// CHECK-128B-NOT: memref.collapse_shape
+
+// -----
+
+// One of the dims to be flattened is dynamic and leftmost.
+
+func.func @transfer_write_dynamic_leftmost_dim_to_flatten(
+ %idx_1: index,
+ %idx_2: index,
+ %vec : vector<1x2x6xi32>,
+ %mem: memref<1x?x4x6xi32>) {
+
+ %c0 = arith.constant 0 : index
+ %c0_i32 = arith.constant 0 : i32
+ vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true, true]} :
+ vector<1x2x6xi32>, memref<1x?x4x6xi32>
+ return
+}
+
+// CHECK-LABEL: func.func @transfer_write_dynamic_leftmost_dim_to_flatten
+// CHECK-SAME: %[[IDX_1:arg0]]: index
+// CHECK-SAME: %[[IDX_2:arg1]]: index
+// CHECK-SAME: %[[VEC:arg2]]: vector<1x2x6xi32>,
+// CHECK-SAME: %[[MEM:arg3]]: memref<1x?x4x6xi32>
+// CHECK-NEXT: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-NEXT: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{\[}}[0], [1, 2, 3]{{\]}}
+// CHECK-SAME: : memref<1x?x4x6xi32> into memref<1x?xi32>
+// CHECK-NEXT: %[[TMP:.+]] = affine.apply #map{{.*}}()[%[[IDX_1]], %[[IDX_2]]]
+// CHECK-NEXT: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<1x2x6xi32> to vector<12xi32>
+// CHECK-NEXT: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
+// CHECK-SAME: [%[[C0]], %[[TMP]]]
+// CHECK-SAME: {in_bounds = [true]} : vector<12xi32>, memref<1x?xi32>
+// CHECK-NEXT: return
+
+// CHECK-128B-LABEL: func @transfer_write_dynamic_leftmost_dim_to_flatten
// CHECK-128B-NOT: memref.collapse_shape
// -----
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks correct to me! I found the test of transfer_read
memref<1x4x?x6xi32> -> vector<1x2x6xi32>
slightly confusing though, because the transfer_read itself is still contiguous because of the leading 1 in the vector shape (?). Would it make sense to test this change in isolation by printing contiguity in final dimensions here
llvm::outs() << "\n"; |
or somewhere similar, and adding some tests somewhere here
?
Memrefs where only the leftmost dimension of the trailing ones to check for contiguity is dynamic can be reasoned about.